CCAT-prime Science Team
Activities and Surveys

Gordon Stacey
Cornell University
A Bit of History

• Science team efforts in existence since nearly the dawn of CCAT-prime in spring of 2016

• First Formal Science Teams
 – Galactic Ecology Science (Peter Schilke)
 – Cluster science (Frank Bertoldi)
 – Dusty Starforming Galaxies (Gordon Stacey)
 – EoR IM science (Dominic Riechers)
 – CMBR science (Mike Niemack)
Joint Science Telecoms

• Early days: biweekly telecoms
 1. Cluster science grouped with CMBR science
 2. DSFG science grouped with EoR IM science
 3. Galactic Ecology somewhat independent

• Evolved into “Joint Science Telecoms”
 – Group of 20 to 30 scientists from “1” and “2”
 meeting more-or-less once a week

• Holding these telecoms ever since
Products

• Science focus sharpened within each topic
 – Presentations of science expectations driving instrumentation requirements
 – Noise models produced and refined
 – Feedback to instrument design – some modifications!

• Science forecasts made driving the next ideas and feeding into proposal preparation

• Planned Science Workshop at U. Chile, April 2019

• New Science themes unfold…
 – Rayleigh Scattering
 – Transient Science
 – Dust polarization and star formation

• Planned this Collaboration Meeting…
Feedback: Science Products and Instrumentation

• Instrumentation constraints
 – Per Pixel Sensitivity
 • instrument throughput
 • Detector types/quantum efficiency.
 • thermal backgrounds
 • sky noise
 – Numbers of Pixels
 • fundamentally FoV
 • but... also budget... - in the sense of numbers of tubes

• Science constraints
 – Sensitivity requirements ⇒ RP of IM FPI: 300 → 100
 – Availability of low frequency SO surveys ⇒ first light submm cameras will 280 GHz, then 350 GHz.
We are publishing!
Pre-Decadal Publications

First one to mention CCAT!

2018 SPIE Proceedings

2. CCAT-prime: a novel telescope for sub-millimeter astronomy (S. Parshley et al.)

3. The optical design of the six-meter CCAT-prime and Simons Observatory telescopes (S. Parshley et al.)

4. Prime-Cam: a first-light instrument for the CCAT-prime telescope (E. Vavagiakis et al.)

5. Optimizing the Efficiency of Fabry-Perot Interferometers with Silicon-Substrate Mirrors (N. Cothard et al.)

6. CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor (G. Stacey et al.)
Since SPIE 2018

9. Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys, A. Mittal et al. 2018 JCAP, 2, 32M

13. The Design of the CCAT-prime Epoch of Reionization Spectrometer Instrument, Nick Cothard et al. 2020 JLT..tmp....4C

2020 Decadal Review White Papers

15. Mroczkowski
16. Cicone
17. Meerburg
18. Kovetz
19. Meerburg
20. Lis
21. Mroczkowski
22. Geach
23. Casey
24. Mantz
25. Chang
26. Battaglia
27. Basu
28. Ruszkowski
29. Orlowski-Scherer
30. Simon
31. La-Plante
32. Fischer
33. Burchett
34. Stanke
35. Johnstone
36. Herter
Studying high-z galaxies with [C\textsc{ii}] intensity mapping

B. Yue1 & A. Ferrara2,3,*

1National Astronomical Observatories, Chinese Academy of Sciences, 20A, Datun Road, Chaoyang District, Beijing, 100101, China
2Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
3Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583, Japan

26 September 2019

ABSTRACT

We investigate the [C\textsc{ii}] line intensity mapping (IM) signal from galaxies in the Epoch of Reionization (EoR) to assess its detectability, the possibility to constrain the L_{CII} – SFR relation, and to recover the [C\textsc{ii}] luminosity function (LF) from future experiments. By empirically assuming that $\log L_{\text{CII}} = \log A + \gamma \text{SFR} \pm \sigma_L$, we derive the [C\textsc{ii}] LF from the observed UV LF, and the [C\textsc{ii}] IM power spectrum. We study the shot-noise and the full power spectrum separately. Although, in general, the shot-noise component has a much higher signal-to-noise ratio than the clustering one, it cannot be used to put independent constraints on $\log A$ and γ. Full power spectrum measurements are crucial to break such degeneracy, and reconstruct the [C\textsc{ii}] LF. In our fiducial survey S1 (inspired by CCAT-p/1000 hr) at $z \sim 6$, the shot-noise (clustering) signal is detectable for 2 (1) of the 5 considered L_{CII} – SFR relations. The shot-noise is generally dominated by galaxies with $L_{\text{CII}} \gtrsim 10^{8.9} \ L_\odot$ ($M_{\text{UV}} \sim -20$ to -22), already at reach of ALMA pointed observations. However, given the small field of view of such telescope, an IM experiment would provide unique information on the bright-end of the LF. The detection depth of an IM experiment crucially depends on the (poorly constrained) L_{CII} – SFR relation in the EoR. If the L_{CII} – SFR relation varies in a wide $\log A - \gamma$ range, but still consistent with ALMA [C\textsc{ii}] LF upper limits, even the signal from galaxies with L_{CII} as faint as $\sim 10^{7} \ L_\odot$ could be detectable. Finally, we consider the contamination by continuum foregrounds (CIB, dust, CMB) and CO interloping lines, and derived the requirements on the residual contamination level to reliably extract the [C\textsc{ii}] signal.

Key words: galaxies: high-redshift, dark ages, reionization, first stars, diffuse radiation, radio lines: galaxies
SPIE 2020 Papers

40. **Observatory control software for CCAT-prime**, Mike Nolta et al.

We’ll see if this happens this summer!
Groups Subdivide for Focus

- **Tracing the Epoch of Ionization through Line Intensity Mapping** (Coordinators: Stacey, Riechers)
- **Galaxy and Cluster Formation** (Coordinators: Battaglia, Basu)
- **Tracing Dusty Star Formation over Cosmic Time** (Coordinators: Chapman, Aravena)
- **Characterizing foregrounds for CMB observations** (Coordinators: Niemack, Choi)
- **CMB Constraints on cosmological Rayleigh Scattering** (Coordinator: Meerburg)
- **New Windows into Time Domain Astrophysics** (Coordinator: Johnstone)
- **Tracing Star Formation in the Galaxy and Nearby Galaxies** (Coordinators: Simon, Stutz, Nikola)
- **Magnetic Fields and Galactic Science** (Coordinator: Fissel)
Going Forward

• Plans are to continue full SWG telecoms biweekly
• Expectation is that subgroups will hold sub-telecoms (maybe shared) to progress:
 – Science motivation
 – Sensitivity requirements
 – Survey requirements
 – Instrumentation desire-ments beyond our first light modules
Surveys

<table>
<thead>
<tr>
<th>Survey</th>
<th>Field ID</th>
<th>LST range [h]</th>
<th>Area [deg²]</th>
<th>Time [hr]</th>
<th>Sensitivity [MJy sr⁻¹ bin⁻¹ @ 220]</th>
<th>Supporting Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>EoR⁺</td>
<td>E-COSMOS</td>
<td>7.0-13.0</td>
<td>8</td>
<td>2000</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E-CDFS</td>
<td>23.5-7.0</td>
<td>8</td>
<td>2000</td>
<td>0.02</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HERA-Dark</td>
<td>13.0-23.5</td>
<td>8</td>
<td></td>
<td>(filler)</td>
<td>3</td>
</tr>
<tr>
<td>DSFG</td>
<td>Stripe 82</td>
<td>20.0-5.5</td>
<td>300</td>
<td>500</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GAMA9/12/15</td>
<td>5.5-20.0</td>
<td>110</td>
<td>180</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>SZ/CMB</td>
<td>AdvACT/SO</td>
<td>all</td>
<td>12,000</td>
<td>4000</td>
<td>11 µK/arcmin² (CMB)</td>
<td>6</td>
</tr>
</tbody>
</table>

⁺Spectroscopy; sensitivities provided for $R=100$.

(1) Deep Subaru HSC+PSF spectroscopy & COSMOS X-Ray-to-meter-wave multiwavelength survey;
(2) deep Euclid grism spectroscopy (upcoming), HERA HI 21 cm (upcoming), & H-UDF/CDF-S multiwavelength surveys (incl. JWST GTO);
(3) HERA HI 21 cm (upcoming), VLASS;
(4) SDSS, HeLMS/HeRS Herschel/SPIRE, VLASS;
(5) GAMA, H-ATLAS Herschel/SPIRE, ACT, VLASS;
(6) Planck, SDSS, DES, ACT, SO, DESI, LSST, eROSITA (upcoming).

Preliminary sensitivity model; a more advanced model is now available in Choi et al. (2019) [15].

Fields chose to overlap with existing/planned surveys

Herter et al. 2020 Decadal white paper (arXiv:1909.02587)
Extended-CDFS (Chandra Deep Field South)
Surveys as Currently Planned

“cosmology” survey (green boxes) expandable to include Galactic regions

Dec. of $+10^\circ$ is above:
El. = 55° for 2 hr
El. = 48° for 4 hrs
El. = 35° for 6 hrs

Handy quick tool from Mike Fich
Collaboration Meeting Goals

• Foster:
 – collaborations between scientists within areas of scientific expertise
 – collaborations between scientists across areas of scientific expertise

• Communicate data and survey requirements to technical team (who are often fellow scientists)

• Look for:
 – exciting first light science
 – synergies in survey fields – more than one science tube can operate at the same time!
 • Brings in questions of field size and integration time, i.e. scan strategies